Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Environ Sci Pollut Res Int ; 30(31): 77453-77468, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-20237864

ABSTRACT

The COVID-19 pandemic has mandated people to use medical masks to protect the public. However the improper management of disposable mask waste has led to the increase of marine pollution, in terms of water quality, and the decline in aquatic microorganisms. The aim of this research was to investigate the impact of disposable mask waste on fresh water and microalgae biomass quality. Disposable masks (untreated or treated with Enterococcus faecalis) were placed in 10-L glass reactors containing fresh water or water containing algal Chlorella sp. and its growth supplements (Chlorella medium) (four 10-L reactors in total) and kept in controlled conditions for 3 months. Water and biomass yield quality were evaluated using water quality analysis, spectroscopy, scanning electron microscopy (SEM), and proximate lipid and protein analysis. Disposable masks, incubated in either fresh water or Chlorella medium, affected several water quality parameters such as chemical oxygen demand (COD), biological oxygen demand (BOD), dissolved oxygen (DO), and pH. Microplastic identification revealed that some fibers were present in the water following a 100-day treatment process. Fourier transform-infrared spectroscopy (FTIR) analysis was used to determine the change in important, organic functional groups and highlighted the disappearance of a peak at 1530 cm-1 corresponding to the primary protein (C-N) and the appearance of new peaks at 1651 cm-1 and 1270 cm-1 corresponding to methyl alcohol (CH2OH) and ketone (C = O), respectively. This indicated the detrimental effect of disposable mask fragmentation on the biomass quality. The SEM investigation has shown a damage to the surface membrane of Chlorella sp. cells. Altogether, disposable masks decreased the water quality and damaged microalgae by inhibiting their growth. Therefore, the disposable mask contaminated by various microbes, after being used by a human, may be one of the most dangerous hazards to the environment.


Subject(s)
COVID-19 , Chlorella , Microalgae , Humans , Plastics , Microplastics , Pandemics
2.
Comp Biochem Physiol C Toxicol Pharmacol ; 267: 109587, 2023 May.
Article in English | MEDLINE | ID: covidwho-2256314

ABSTRACT

During the COVID-19 pandemic billions of face masks were used since they became a necessity in everyone's lives. But these were not disposed properly and serve as one of the most significant sources of micro and nano plastics in the environment. The effects of mask leached plastics in aquatic biota remains largely unexplored. In this work, we quantified and characterized the released microplastics from the three layers of the mask. The outer layer of the face mask released more microplastics i.e., polypropylene than middle and inner layers. We investigated and compared the acute toxic effects of the released microplastics between Scenedesmus obliquus and Chlorella sp. The results showed a decrease in cell viability, photosynthetic yield, and electron transport rate in both the algal species. This was accompanied by an increase in oxidative stress markers such reactive oxygen species (ROS) and malondialdehyde (MDA) content. There was also a significant rise of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) in both the algal cells. Furthermore, morphological changes like cell aggregation and surface chemical changes in the algae were ascertained by optical microscopy and FTIR spectroscopy techniques, respectively. The tests confirmed that Scenedesmus obliquus was more sensitive than Chlorella sp. to the mask leachates. Our study clearly revealed serious environmental risk posed by the released microplastics from surgical face masks. Further work with other freshwater species is required to assess the environmental impacts of the mask leachates.


Subject(s)
COVID-19 , Chlorella , Microalgae , Scenedesmus , Water Pollutants, Chemical , Humans , Microplastics/metabolism , Scenedesmus/metabolism , Masks , Pandemics , Plastics , Water Pollutants, Chemical/metabolism
3.
Mar Drugs ; 20(11)2022 Oct 23.
Article in English | MEDLINE | ID: covidwho-2081922

ABSTRACT

Severe acute respiratory syndrome-Coronavirus 2 (SARS-CoV-2) can infect various human organs, including the respiratory, circulatory, nervous, and gastrointestinal ones. The virus is internalized into human cells by binding to the human angiotensin-converting enzyme 2 (ACE2) receptor through its spike protein (S-glycoprotein). As S-glycoprotein is required for the attachment and entry into the human target cells, it is the primary mediator of SARS-CoV-2 infectivity. Currently, this glycoprotein has received considerable attention as a key component for the development of antiviral vaccines or biologics against SARS-CoV-2. Moreover, since the ACE2 receptor constitutes the main entry route for the SARS-CoV-2 virus, its soluble form could be considered as a promising approach for the treatment of coronavirus disease 2019 infection (COVID-19). Both S-glycoprotein and ACE2 are highly glycosylated molecules containing 22 and 7 consensus N-glycosylation sites, respectively. The N-glycan structures attached to these specific sites are required for the folding, conformation, recycling, and biological activity of both glycoproteins. Thus far, recombinant S-glycoprotein and ACE2 have been produced primarily in mammalian cells, which is an expensive process. Therefore, benefiting from a cheaper cell-based biofactory would be a good value added to the development of cost-effective recombinant vaccines and biopharmaceuticals directed against COVID-19. To this end, efficient protein synthesis machinery and the ability to properly impose post-translational modifications make microalgae an eco-friendly platform for the production of pharmaceutical glycoproteins. Notably, several microalgae (e.g., Chlamydomonas reinhardtii, Dunaliella bardawil, and Chlorella species) are already approved by the U.S. Food and Drug Administration (FDA) as safe human food. Because microalgal cells contain a rigid cell wall that could act as a natural encapsulation to protect the recombinant proteins from the aggressive environment of the stomach, this feature could be used for the rapid production and edible targeted delivery of S-glycoprotein and soluble ACE2 for the treatment/inhibition of SARS-CoV-2. Herein, we have reviewed the pathogenesis mechanism of SARS-CoV-2 and then highlighted the potential of microalgae for the treatment/inhibition of COVID-19 infection.


Subject(s)
COVID-19 Drug Treatment , Chlorella , Microalgae , Animals , Humans , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Spike Glycoprotein, Coronavirus/metabolism , Microalgae/metabolism , Chlorella/metabolism , Peptidyl-Dipeptidase A/chemistry , Protein Binding , Glycoproteins/metabolism , Mammals/metabolism
4.
Antiviral Res ; 204: 105371, 2022 08.
Article in English | MEDLINE | ID: covidwho-1906744

ABSTRACT

Although several vaccines and antiviral drugs against SARS-CoV-2 are currently available, control and prevention of COVID-19 through these interventions is limited due to inaccessibility and economic issues in some regions and countries. Moreover, incomplete viral clearance by ineffective therapeutics may lead to rapid genetic evolution, resulting in the emergence of new SARS-CoV-2 variants that may escape the host immune system as well as currently available COVID-19 vaccines. Here, we report that phytochemicals extracted from Chlorella spp. and Psidium guajava possess broad-spectrum antiviral activity against a range of SARS-CoV-2 variants. Through chromatography-based screening, we identified four bioactive compounds and subsequently demonstrated their potential antiviral activities in vivo. Interestingly, in hACE2 mice, treatment with these compounds significantly attenuates SARS-CoV-2-induced proinflammatory responses, demonstrating their potential anti-inflammatory activity. Collectively, our study suggests that phytochemicals from edible plants may be readily available therapeutics and prophylactics against multiple SARS-CoV-2 strains and variants.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Chlorella , Animals , Antiviral Agents/therapeutic use , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Mice , Phytochemicals/pharmacology , SARS-CoV-2
5.
J Biotechnol ; 349: 32-46, 2022 Apr 10.
Article in English | MEDLINE | ID: covidwho-1757477

ABSTRACT

Over the decades, a variety of chemically synthesized drugs are being used to cure existing diseases but often these drugs could not be effectively employed for the treatment of serious and newly emerging diseases. Fortunately, in nature there occurs immense treasure of plants and microorganisms which are living jewels with respect to their richness of medically important metabolites of high value. Hence, amongst the existing microorganism(s), the marine world offers a plethora of biological entities that can contribute to alleviate numerous human ailments. Algae are one such photosynthetic microorganism found in both marine as well as fresh water which are rich source of metabolites known for their nutrient content and health benefits. Various algal species like Haematococcus, Diatoms, Griffithsia, Chlorella, Spirulina, Ulva, etc. have been identified and isolated to produce biologically active and pharmaceutically important high value compounds like astaxanthin, fucoxanthin, sulphur polysaccharides mainly galactose, rhamnose, xylose, fucose etc., which show antimicrobial, antifungal, anti-cancer, and antiviral activities. However, the production of either of these bio compounds is favored under conditions of stress. This review gives detailed information on various nutraceutical metabolites extracted from algae. Additionally focus has been made on the role of these bio compounds extracted from algae especially sulphur polysaccharides to treat several diseases with prospective treatment for SARS-CoV-2. Lastly it covers the knowledge gaps and future perspectives in this area of research.


Subject(s)
COVID-19 Drug Treatment , Chlorella , Microalgae , Humans , Polysaccharides/chemistry , Polysaccharides/therapeutic use , Prospective Studies , SARS-CoV-2 , Sulfur
6.
J Hazard Mater ; 427: 128139, 2022 04 05.
Article in English | MEDLINE | ID: covidwho-1587273

ABSTRACT

Increased worldwide consumption of antiviral drugs (AVDs) amid COVID-19 has induced enormous burdens to the existing wastewater treatment systems. Microalgae-based bioremediation is a competitive alternative technology due to its simultaneous nutrient recovery and sustainable biomass production. However, knowledge about the fate, distribution, and interaction of AVDs with microalgae is yet to be determined. In this study, a concentration-determined influence of AVD oseltamivir (OT) was observed on the biochemical pathway of Chlorella sorkiniana (C.S-N1) in synthetic municipal wastewater. The results showed that high OT concentration inhibited biomass growth through increased oxidative stress and restrained photosynthesis. Nevertheless, complete OT removal was achieved at its optimized concentration of 10 mg/L by various biotic (82%) and abiotic processes (18.0%). The chemical alterations in three subtypes of extracellular polymeric substances (EPS) were primarily investigated by electrostatic (OT +8.22 mV vs. C.S-N1 -18.31 mV) and hydrophobic interactions between EPS-OT complexes supported by secondary structure protein analysis. Besides, six biodegradation-catalyzed transformation products were identified by quadrupole-time-of-flight mass spectrometer and by density functional theory. Moreover, all the TPs exhibited log Kow ≤ 5 and bioconcentration factor values of < 5000 L/kg, meeting the practical demands of environmental sustainability. This study broadens our understanding of microalgal bioadsorption and biodegradation, promoting microalgae bioremediation for nutrient recovery and AVDs removal.


Subject(s)
COVID-19 , Chlorella , Microalgae , Biomass , Humans , Oseltamivir , SARS-CoV-2 , Wastewater
7.
Nat Biomed Eng ; 4(12): 1168-1179, 2020 12.
Article in English | MEDLINE | ID: covidwho-780008

ABSTRACT

The control of viral outbreaks requires nucleic acid diagnostic tests that are sensitive, simple and fast. Here, we report a highly sensitive and specific one-pot assay for the fluorescence-based detection of RNA from pathogens. The assay, which can be performed within 30-50 min of incubation time and can reach a limit of detection of 0.1-attomolar RNA concentration, relies on a sustained isothermal reaction cascade producing an RNA aptamer that binds to a fluorogenic dye. The RNA aptamer is transcribed by the T7 RNA polymerase from the ligation product of a promoter DNA probe and a reporter DNA probe that hybridize with the target single-stranded RNA sequence via the SplintR ligase (a Chlorella virus DNA ligase). In 40 nasopharyngeal SARS-CoV-2 samples, the assay reached positive and negative predictive values of 95 and 100%, respectively. We also show that the assay can rapidly detect a range of viral and bacterial RNAs.


Subject(s)
COVID-19/diagnosis , Molecular Diagnostic Techniques/methods , RNA, Viral/genetics , SARS-CoV-2/genetics , Transcription, Genetic/genetics , COVID-19/virology , Chlorella/metabolism , DNA/genetics , DNA Ligases/metabolism , DNA-Directed RNA Polymerases/metabolism , Diagnostic Tests, Routine/methods , Fluorescence , Humans , Nucleic Acid Amplification Techniques , Pandemics/prevention & control , Sensitivity and Specificity , Viral Proteins/metabolism
8.
Nutrients ; 12(9)2020 Aug 25.
Article in English | MEDLINE | ID: covidwho-731022

ABSTRACT

The 2019 novel coronavirus, SARS-CoV-2, producing the disease COVID-19 is a pathogenic virus that targets mostly the human respiratory system and also other organs. SARS-CoV-2 is a new strain that has not been previously identified in humans, however there have been previous outbreaks of different versions of the beta coronavirus including severe acute respiratory syndrome (SARS-CoV1) from 2002 to 2003 and the most recent Middle East respiratory syndrome (MERS-CoV) which was first identified in 2012. All of the above have been recognised as major pathogens that are a great threat to public health and global economies. Currently, no specific treatment for SARS-CoV-2 infection has been identified; however, certain drugs have shown apparent efficacy in viral inhibition of the disease. Natural substances such as herbs and mushrooms have previously demonstrated both great antiviral and anti-inflammatory activity. Thus, the possibilities of natural substances as effective treatments against COVID-19 may seem promising. One of the potential candidates against the SARS-CoV-2 virus may be Inonotus obliquus (IO), also known as chaga mushroom. IO commonly grows in Asia, Europe and North America and is widely used as a raw material in various medical conditions. In this review, we have evaluated the most effective herbs and mushrooms, in terms of the antiviral and anti-inflammatory effects which have been assessed in laboratory conditions.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/therapeutic use , Biological Products/therapeutic use , Coronavirus Infections/drug therapy , Fungi/chemistry , Magnoliopsida/chemistry , Plants, Medicinal/chemistry , Pneumonia, Viral/drug therapy , Agaricales/chemistry , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , Basidiomycota/chemistry , Betacoronavirus , Biological Products/pharmacology , COVID-19 , Chlorella/chemistry , Coronavirus Infections/virology , Humans , Pandemics , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Pneumonia, Viral/virology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/virology , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL